
THE STANDARD EQUATION FOR IMPACT FORCE

RICHARD GOLDSTONE

1. A simple rope model

The spring model is an idealized model for the tension developed in a weighted rope. It is
a linear model that is, at worst, still the correct first approximation to actual rope behavior.
The spring model assumes that the tension T in the rope is proportional to the relative
stretch (Hooke’s Law). So if we have a piece of rope of length L and it stretches until its
length is L + y, then the relative stretch is y/L and the tension in the rope is given by

(1) T = k
y

L
.

where k is a constant of proportionality, sometimes called the rope modulus. (Unfortunately,
the term “modulus” is also used for other related constants.) Since T = k when y = L, we
can think of k as describing how much force it would take to stretch a piece of rope to double
its original length, assuming that the material is capable of sustaining such elongations while
still exhibiting the linear behavior of the idealized spring. The units of k are tension force
per unit relative stretch, for example, kilonewtons per unit relative stretch.

For a fixed piece of rope of length L, it is perhaps clearer to collect constants and write

(2) T =
k

L
y.

This says if you stretch a piece of length L and plot the tension T as a function of the
elongation y, the graph will be a straight line (of slope k/L) through the origin. When such
graphs are constructed from experimental data with real ropes, a curve is obtained which
is close to being a straight line. The most deviation occurs at very small and very large
y-values, with a more nearly straight profile in between.

Stretching a rope takes work. Suppose a piece of rope of length L is under no tension.
Then the work involved in stretching the rope from length L to length L + s is

(3) W =

∫ s

0

T dy =
k

L

∫ s

0

y dy =
k

2L
y2

∣∣∣∣s
0

=
k

2L
s2.

2. The conservation of energy approach to peak load

Suppose that a leader with a length of rope L between him and the belayer takes a fall
of length H (so is at distance H/2 above the highest pro). The rope, statically held by the
belayer, catches the fall, stretching an amount s. This means that the total length of the
fall is H + s and the potential energy associated with the fall is mg(H + s), where m is the
mass of the falling climber and g is the acceleration due to gravity. Conservation of energy
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requires that the loss of potential energy be accounted for by the work done in stretching
the rope. Consequently, it must be that

(4) mg(H + s) =
k

2L
s2.

This is really all there is to the analysis. The rest consists of putting this equation in a
convenient form for getting answers. The equation is a quadratic equation whose standard
form is

(5)
k

2L
s2 − (mg)s−mgH = 0.

Solving for s (the maximum elongation of the rope in stopping the fall) via the quadratic
formula,

s =
mg ±

√
(mg)2 − 4

(
k
2L

)
(−mgH)

2
(

k
2L

)(6)

=
mg ±

√
(mg)2 + 2kmg

(
H
L

)
k
L

.(7)

The quantity under the square root sign is bigger than mg, so the use of the minus sign
from the ± symbol would give a negative value for s—an extraneous root. Hence the only
possible sign is positive.

Multiply both sides of the equation by k/L and use the fact that T = (k/L)s to get

(8) T = mg +

√
(mg)2 + 2kmg

(
H

L

)
.

T is the tension corresponding to maximum rope elongation, i. e. T is the maximum tension
developed in the rope. Note that for a climber of a given weight mg, and a rope with a given
constant k, the maximum tension in the rope depends only on the ratio H/L and not, for
example, on just the height of the fall H. This derivation is why everyone discusses falls in
terms of the fall factor, which is defined to be the value of H/L. Since the separate values
of H and L don’t matter, set r = H/L and write

(9) T = mg +
√

(mg)2 + 2kmgr.

Let w denote the falling climber’s weight. Then w = mg and Equation (9) becomes

(10) T = w +
√

w2 + 2krw.

Note that k must be calculated in units whose force component agrees with the units of w
and T .

In order to use this formula, one needs to know the rope modulus k. Manufacturers do
not publish the value of k, instead they give the UIAA impact force U , which is the tension
developed in the rope when an 80 kg mass undergoes a fall with fall factor F = 1.78. This
data can be substituted into the equation above: T = U , w = mg = 80× 0.0098 = .784 kN,
r = 1.78 and the result solved for k to get

(11) k =
U(U − 1.568)

2.791
.
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The tension equation for an 80 kg climber becomes

(12) T = 0.784 +

√
0.7842 +

U(U − 1.568)

1.396
(0.784)r,

which simplifies to

(13) T = 0.784 +
√

0.615 + (0.562)U(U − 1.568)r,

where U is the rope’s published impact force in kN and r is the fall factor. The result for T
is in kN.

The peak load on the top piece is conventionally calculated to be (5/3)T , which accounts
for a frictional force over the top carabiner equal to 1/3 of the rope tension T on the leader’s
side.

There is a consequence of Equation (10) that seems little appreciated in the climbing
world. Simply weighting a rope, rather than having it catch a fall, corresponds to a fall
factor r = 0. For that fall factor, we find that T = 2w; the maximum tension in the
climbing rope is double the climber’s weight. What happens when a rope is weighted is that
it stretches until the maximum tension is twice the climber’s weight, and then recovers to
the point that the tension in the rope is just the climber’s weight. But the anchor will be
momentarily subjected to double the climber’s weight.

3. The differential equation approach to peak load

Differential equations can be used to model the motion of a weighted spring that has been
either stretched or compressed and then released. The ingredients needed for the equation
are Hooke’s Law from Section 1 and Newton’s law F = ma. The derivation can be found in
any book on ordinary differential equations. Repeating it here allows us, first, to alter details
of the standard treatments so that the solution is adapted to the particular conditions of the
falling leader, and second, to suppress everything that is not relevant to the case at hand.

This approach is longer and more complex than the conservation of energy argument. This
disadvantage is offset by a significant advantage: the differential equation approach allows
for modifications that produce a more accurate model. It is an observation that the leader
does not bounce up and down forever when stopped by a rope, in fact there is hardly any
noticeable bounce. For those that know what the terms mean, this suggests that the rope
behaves like a critically damped spring, and a damping term can be added to Equation (14)
to model that effect. We leave the results of such an improved model to the reader who
knows how to carry out the modifications needed.

We, however, are modelling the “rope with falling leader” with a spring, anchored at
one end and with a mass mg attached to the other end. Let y(t) denote the amount of
displacement in the spring at time t, with downward displacements (stretchings) counted as
positive and upward displacements (compressions) counted as negative. At any instant t,
there will be a gravitational force mg acting down on the spring and a Hooke’s Law force
− k

L
y acting in the opposite direction from the direction of the displacement y.

Thus, the net force F on the mass at the end of the spring will be F = mg − k
L
y. Using

Newton’s law F = ma, this becomes ma = mg − k
L
y or a = g − k

mL
y. Using the definition

of acceleration, this becomes

(14)
d2y

dt2
= g −

(
k

mL

)
y, y(0) = 0,
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where y is the displacement from the hanging position of the unweighted spring.
In order to compute the maximum tension in the spring, we need to know what the spring’s

maximum elongation is. We know that at the instant of maximum elongation, the spring
has stopped the weight’s fall, in other words, we know that the weight’s velocity v must
be zero at the instant of maximum spring elongation. The differential equation (14) relates
elongation y to time t, but in order to use these observations, we need a result that relates
elongation y to velocity v.

To get the velocity v into the picture, use the fact that

(15)
d2y

dt2
=

dv

dt
.

Since we would like to view the weight’s velocity v as a function of spring elongation y, we
are interested in a differential equation involving y and dv

dy
. But the chain rule tells us that

(16)
dv

dt
=

dv

dy
· dy

dt
=

dv

dy
v.

Assembling the results of Equations (14), (15), and (16), we get the equation

(17) v
dv

dy
= g − k

mL
y.

But we also need an initial condition for v corresponding to y(0) = 0 in Equation (14). In
the initial condition y(0) = 0, the time t = 0 corresponds to the instant at which the spring
is hanging unweighted. In terms of the falling climber, this would be the instant at which
the rope straightens out before it starts slowing down the falling climber. The velocity at
this moment is the velocity v0 of the falling climber at the instant the rope begins the catch,
and so the initial-value problem becomes

(18) v
dv

dy
= g − k

mL
y, v(0) = v0.

This differential equation is already set up for separation of variables, i. e. we can just
integrate both sides with respect to y to get

(19)
1

2
v2 + c = gy − k

2mL
y2,

with the value c = −1
2
v2

0 determined by the initial condition v = v0 when y = 0. So

(20)
1

2
(v2 − v2

0) = gy − k

2mL
y2,

or

(21) v2 − v2
0 = 2gy − k

mL
y2.

We want the elongation y when the falling leader’s velocity v is zero, so we want to solve

(22) −v2
0 = 2gy − k

mL
y2

for y. Rewriting this as k
mL

y2 − 2gy − v2
0 = 0 and using the quadratic formula, we get

(23) y =
2g ±

√
4g2 + 4

(
k

mL

)
v2

0

2k
mL

=
g ±

√
g2 +

(
k

mL

)
v2

0

k
mL

=
mg ±

√
m2g2 + m

(
k
L

)
v2

0

k
L

.
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In the case we are interested in, the spring will be stretched (not compressed), so y must be

positive. Since the quantity
√

m2g2 + m
(

k
L

)
v2

0 is bigger than mg, using the − part of the

± sign would produce a negative y and this cannot be. Hence, the formula relevant to our
case is

(24) y =
mg +

√
(mg)2 + m

(
k
L

)
v2

0

k
L

.

By Hooke’s Law, the tension T in the spring at the moment when the leader’s velocity has
been reduced to zero is T = k

L
y, and so we have

(25) T = mg +

√
(mg)2 + m

(
k

L

)
v2

0,

where v0 is the falling leader’s velocity at the moment the rope starts to arrest the fall.
We are left with the task of finding v0. The climber falls a distance H; the time this

takes satisfies 1
2
gt2 = H, so t =

√
2H
g

and hence v0 = gt =
√

2gH. Substitutin this value is

substituted for v0 into Equation (25) gives

(26) T = mg +

√
(mg)2 + m

(
k

L

)
(2gH) = mg +

√
(mg)2 + 2kmg

(
H

L

)
,

and this is precisely Equation (8), thereby re-establishing the result obtained from the con-
servation of energy argument.
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